Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Atmospheric Pollution Research ; : 101694.0, 2023.
Article in English | ScienceDirect | ID: covidwho-2241220

ABSTRACT

We report the results from a 12 month-long study of the organic compounds associated to PM2.5 samples collected around two petroleum refineries (4 samples/month/site) in two complex industrial zones reporting atmospheric pollution issues in the past (Estuary of Huelva and Bay of Algeciras, Spain). Sampling campaign was done from March 2020 when a Covid-19 lockdown was established at Spain to March 2021. Concentrations of fine particulate polycyclic aromatic hydrocarbons (PAHs) and anhydrosugars were separately measured using gas chromatography-mass spectrometry (GC-MS) and ion chromatography-amperometric detection (IC-PAD). The annual average abundances of PM2.5-bound benzo[a]pyrene (BaP) are 0.024 and 0.013 ng˖m−3 at La Rábida and Puente Mayorga monitoring stations, while both sites have annual average concentrations of levoglucosan in PM2.5 of 14.98 and 9.78 ng˖m−3, respectively. Seasonal variations are observed for concentrations of ƩPAHs and total anhydrosugars in both sampling sites. For PAHs, the highest concentrations averaging c. a. 0.400 (La Rábida) and 0.350 ng m−3 (Puente Mayorga) are reported in cold months during December 2020-Febraury 2021 (post-lockdown period), compared to the lowest levels averaging 0.111 and 0.211 ng˖m−3, respectively, in temperate months from mid-March 2020 to early June 2020 (0.284 and 0.321 ng m−3 on average annually), coinciding with the confinement and relaxation periods in Spain. Similarly, total anhydrosugars show the highest values of 81.80 ng˖m−3 (La Rábida) and 53.52 ng˖m−3 (Puente Mayorga) in winter and lowest values of 2.71 ng˖m−3 and 3.30 ng˖m−3 into the lockdown period (22.51 and 14.09 ng˖m−3 on average annually). Except phenanthrene, PAHs are present in PM2.5 principally as result of motor vehicle exhausts. Levoglucosan, a tracer for biomass burning, peaked in December 2020 and January 2021, during the high residential wood-burning season. In addition, multivariate analysis was used to assess the origin of organic components of PM2.5 samples. The two principal components are characterized by the grouping of heavy PAHs associated to vehicular traffic, and anhydrosugars indicating biomass burning emissions, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL